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EXECUTIVE SUMMARY

The objective of this work is to develop a robust design methodology for optimizing microstructure-
sensitive properties in aircraft components manufactured using metal forming processes. The multi-scale
forming design simulator developed as a part of this project provides means to select the sequence of defor-
mation processes, design the dies and preforms for each process stage as well as the process conditions such
that a product is obtained with desired shape and microstructure. Modeling of uncertainty propagation in
such multi-scale models of deformation is extremely complex considering the nonlinear coupled phenomena
that need to be accounted for. The work completed in the project addresses key mathematical and compu-
tational issues related to robust multi-scale design of deformation processes. Our research accomplishments
include development of new mathematical models based on spectral polynomial chaos, support space, and
entropy maximization techniques for modeling sources of uncertainties in material deformation processes.
These models, in conjunction with multi-scale homogenization models, allow simulations of the effect of
microstructural variability on the reliability of macro-scale systems. We have developed the first stochastic
variational multi-scale simulator with an explicit sub-grid model, a robust deformation process simulator
using spectral and collocation methods for simulating uncertainties in metal forming processes. Fmdl]\,. re-
cent developments including an information theoretic framework for modeline micractriatamst -
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is summarized.



1 Status of effort

The most significant mathematical techniques/computational algorithms developed as a part of this project
are explained briefly in this final report:

1. Development of spectral stochastic finite element method and non-intrusive stochastic Galerkin method
for robust modeling and design of deformation processes [1, 2, 3]

2. Development of multi-scale sensitivity analysis for designing microstructure-sensitive properties in de-
formation processes [4, 5, 6].

3. Development of continuum sensitivity analysis technique for design of complex three dimensional de-
formation processes [7].

4. Development of stochastic variational multi-scale model with explicit subgrid modeling for solving
multi-scale partial differential equations (PDEs) in random heterogeneous microstructures [8, 9].

5. Development of maximum entropy techniques for modeling topological uncertainties in polycrystalline
metallic microstructures and its influence of homogenized properties.[10, 11, 12]

Detailed information on mathematical developments are available from the above papers and the thesis of
students involved in the project. Preprints of the above papers and thesis copies are available for download
at our web-site http://mpdc.mae.cornell.edu

2 Development of stochastic finite element techniques for robust
modeling and design of deformation processes

Two approaches were developed towards modeling uncertainties in deformation processes. In the first tech-
nique, Spectral Stochastic Finite Element Method (SSFEM), a spectral expansion of the current configuration
of a deforming body is proposed using Legendre chaos expansions to compute the stochastic deformation
gradient which is in turn used to compute statistics of several critical quantities in large deformation analysis.
A stochastic large deformation analysis following this approach is presented in our work in [1]. The second
algorithm is based on a finite element representation of the support space of the random variables. This
method is particularly useful for capturing instabilities and bifurcations in physical phenomena as demon-
strated in [2]. The support space representation can lead to a non-intrusive decoupled as well as intrusive
coupled formulation for evaluating the stochastic process. The highlight of the decoupled approach, called
Non-Intrusive Stochastic Galerkin (NISG) method, is that it can be directly applied to presently available
deterministic codes with minimal effort needed to compute the complete probability density function (PDF)
of a stochastic process. In NISG method, the stochastic process is represented over the support space using
piecewise continuous orthogonal polynomials in multi-dimensional random variables. The polynomials we
choose are locally supported element shape functions used for representing functions in the finite element
method. The h and p convergence characteristics of the discretized stochastic domain are identical to spatial
finite elements. The SSFEM and NISG approaches are described in this section.

2.1 Spectral stochastic finite element techniques for robust modeling of defor-
mation processes [1]

This work introduces algorithms for quantifying uncertainty propagation in finite deformation problems.
The first algorithm is based on the the Spectral Stochastic Finite Element Method (SSFEM). A spectral
expansion of the current configuration of a deforming body is proposed using Legendre chaos expansions
to compute the stochastic deformation gradient which is in turn used to compute the stochastic analogs of
the various quantities which appear in large deformation analysis. The deformation process is assumed to
be quasi-static and inertial effects are ignored. A total Lagrangian FEM formulation is used to solve the



direct deformation problem in which material occupying an initial configuration By is deformed to obtain a
configuration B, at time t = {,,4,.

Let X be a material particle in By and let = (X ,t,4,) be its location at time ¢,,,. The total
deformation gradient can be defined as

%('X} tn+3)

F(X,th41) = Vox(X,tph41) = X

(2.1)
The total deformation gradient can then be decomposed into the elastic and plastic parts F° and F?,
respectively. In the subsequent text, we adopt the following notation. All quantities defined at the time
t = t, will be denoted by the subscript n, while all the quantities without any subscript will refer to time
t = tn41. The subscript n + 1 will only be used explicitly wherever needed to facilitate understanding.
In the absence of body forces, the equilibrium equation at ¢ = ¢, can be expressed in the initial
configuration By as,
Voe P=0 (2.2)

where Vj denotes the divergence in By and P is the first Piola-Kirchhoff stress defined in the initial
configuration. P is related to the Cauchy stress T' defined in the current configuration as follows:

P =detFTF T (2.3)

A hyperelastic constitutive law and classical J, flow theory for plastic deformation involving state vari-
able based constitutive models are used. A real-valued space-time stochastic process w(p,t) with known
probability distribution can be written as a function w(p, ¢,8) with p, t and @ denoting dependence on space,
time and the probability space, respectively. In subsequent sections, any quantity with a #-dependence rep-
resents a random quantity and # would be referred to as the random dimension. In the spectral stochastic
approach, two different expansions, the Karhunen Loeve Expansion (KLE) and the Generalized Polynomial
Chaos Expansion (GPCE) have been proposed for representing random quantities. The classical polyno-
mial chaos expansion used in this work employs Hermite polynomials in multidimensional A(0, 1) random
variables as a trial basis for the probability space to represent a stochastic process. Let us consider a set of
independent, identically distributed (iid) Gaussian random variables denoted as {&;(6)}22,. The polynomial
chaos representation of a random process can be written as:

u’(mrtvg) = ﬂ.u(ﬁ'—', t)FU =+ Z aﬁ.(m! t)rl(au(e})

i;=1

+ 33 anil@ (€ (), (8) + ... (2.4)

1y=113=1

where I';(« ) (popularly known as polynomial chaoses) are Hermite polynomials in (§;(6),&2(6),...). The
above equation can be re-written in a compact form as follows:

w(,t,6) = iw,-(m,t)@,:(e) (2.5)

1=0

where there is one-to-one correspondence between the functionals I'y(s ) and ®;(#). In actual practice,
the random process is represented by a truncated chaos expansion with a limited number of terms. The
polynomials {®;(0)}:2, form a complete orthogonal basis for the probability space. The orthogonality
relationship is defined by

<P, >=< ®? > §;; (2.6)

where < .,. > denotes the inner product in the Hilbert support space of the random variables &;. In this
work, since we only deal with uniformly distributed input and material uncertainties, Legendre polynomials
are used in the PC expansion.
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Figure 1: Stochastic motion of the deforming body.

We now proceed to develop stochastic formulations for the deterministic large deformation problem.
In particular, all quantities are considered random and expanded in a polynomial chaos basis. In all the
equations which will be presented, it is important to understand that the stochastic process represents
an ensemble of deterministic realizations associated with a PDF. Thus the stochastic governing equations
represent the governing equations for each of the deterministic realizations in the ensemble. For instance, the
stochastic equilibrium equation represents an ensemble of equilibrium equations for each of the deterministic
realizations comprising the stochastic process. Thus all the constraints and laws which are valid in the
deterministic problem (e.g. objectivity of constitutive laws, detF® > 0, detF? = 1) are equally valid in the
stochastic problem.

We start by making an assumption that the initial undeformed configuration of the body is completely
deterministic. The primary variable of interest in stochastic large deformation analysis is the displacement
which can be expanded as follows:

M
U1 (2,0) = ) Unpy, (2)B:(6) (2.7)
i=0
where, we use a truncated chaos expansion to represent the random variable,

Computing the stochastic deformation gradient The stochastic large-deformation motion of a body
is considered in this section. Let the initial deterministic configuration of the body be denoted as By. We
define a stochastic motion (X ,t,41,6) which deforms the body from its initial configuration to a final
configuration B, 1(6) (Fig. 1). The location of the material point @, ,(¢) in B, () is thus defined by

Tnt1(0) = (X, thy1,0) (2.8)

In the configuration B, (), the coordinates of the different points will be defined by the same random
variables which define the motion. The stochastic position coordinates of the final configuration can be
represented as x,41 = Tny1,P:(0). Since these position coordinates completely define the configuration of
the body, we can denote B, 1(f) as B, 1, ®;, where B, ;;, denotes a virtual configuration defined by the
points &n41,. This configuration may not have any physical interpretation but is only defined to simplify
the understanding of the stochastic formulation.

Using the above definitions, the stochastic deformation gradient at time ¢,,,; can be expressed as

8 Xlt'l !9
F(0) = Vox(X,th1,0) = ﬁt’ikf#

To ensure that the motion is well-defined, it is required that detF(#) > 0. Thus the randomness in a
meaningful motion will propagate in such a manner that the above constraint is satisfied. For a discretized

(2.9)



and parameterized domain such as a finite element mesh, Eq. (2.9) can be expressed as follows:

F(6) = P(zn41,0)Q"'(X) (2.10)
where,
— Oz51(0)
Pog(Tnt1,0) = s (2.11)
and A
Qap(X) = s (2.12)
where 73 denotes the natural coordinates in the parameterized domain and e, 3 = 1,...,nsd where nsd

denotes the number of space dimensions of the problem. Now, we can expand z, ,(f) in its polynomial
chaos basis as follows

2511(6) = 254, 9:(0) (2.13)
and as a result P can be written as
P(zn+l:6) = Pi[mﬂ-l—l.)q)i{g) (214)

where each P; denotes a nsd x nsd matrix given by

dz>
Puﬁ.{$n+l.) = (;Hl
Mg

(2.15)

For notational simplicity, the dependencies ¢ and x are dropped henceforth. Using Eqs. (2.9), (2.12)
and (2.14), the deformation gradient can now be written as follows:

F=F® =(P®,)(Q)" (2.16)

Thus, F; can be obtained as
F,=P,Q! (2.17)

Each F; in the above equation can be interpreted as the deformation gradient for the motion which maps
the initial configuration By to each of the virtual configurations B;. The other quantities which appear in
the principle of virtual work statement can now be derived from F.

Linearized stochastic virtual work: Having computed F', we now proceed to formulate the linearized
virtual work equation for the stochastic finite deformation problem. The linearized stochastic virtual work
can be expressed as follows:

di du
Rl N 2, tid :
/B"dP TV /BDP — °+/I‘ @ dAo (2.18)

Expanding the random variables in their polynomial chaos expansions (PCE), we obtain:

ou; ou;

dP;.—2®;®,dV, :-/ P, —13,®, dV, +/ tiw;®;®; dA 2.19

./B“ 8X1}0 Bolaxtjﬂ r:l:JO ( )
All the quantities in the above expression except By, dVy,dAg are stochastic in nature. The stochastic
quantities are computed in a similar manner as in the deterministic problem using the elementary operations
for random quantities described earlier. In the process of computing these quantities, analogous expressions
for the stress and strain measures, consistent moduli, elastic and plastic deformation gradients as well as the

stress update algorithm need to be considered.

Next we consider the term g—g‘r in Eq. (2.19) and noting that we use a total Lagrangian formulation, we
obtain the following: 52
i

et (PR HATI.‘ — dFt 2.20
o0X (2:20)

where H is a suitably defined operator.
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Figure 2: One of the realizations in the KL expansion of the fiber orientation (Problem 3).

On substituting Eq. (2.20) in Eq. (2.19) and discretizing the space domain using finite elements and
performing the integration over the initial configuration, we arrive at an expression of the form:

K,—tb,-Aujfbj = BJ.-‘I:’k (221]

Finally on considering a Galerkin projection, a linear system of equations is obtained for the unknowns Aw;
given by
KAu; < $,®,;9; >= B; < ¥} > (2.22)

Thus using the definition of F' and the various operations on random matrices and scalars a complete
stochastic formulation of the hyperelastic-viscoplastic finite deformation problem can be obtained.

Numerical Example: Effect of uncertain fiber orientation on the response of a composite
material

In this problem, we examine the effect of uncertain fiber orientation on the response of a typical aerospace
component made of a composite material. The 2D section of a nozzle flap is shown in Figure 2. Plane strain
conditions are assumed. The total length is taken as 1 mm. Other dimensions are assumed accordingly. The
flap is subjected to an aerodynamic force (uniform pressure) on its back. The pin-eyes are assumed rigidly
fixed. The material is assumed to be orthotropic-hyperelastic. An orthotropic Neo-Hookean strain energy
function is considered for the problem which leads to a non-constant Lagrangian elasticity tensor given by

L = MdetF(2detF —1)C™ ' ® C™' + 2[u + AdetF(detF — 1)|G
+ 8va®Ra®a®Ra+4fa@a@I+IRa®a)— oA (2.23)

The vector a denotes the unit fiber axis. For the 2D case, it can be written as (cosf, sinf,0). For the
stochastic problem, we consider the fiber orientation to be uncertain with the initial fiber angle defined by
a KL expansion using a covariance kernel. An exponential covariance kernel was assumed which is given by

R(py,0,py,0) = (a)zerp(%) (2.24)

where r is the distance between the points p, and p,. b is the correlation length and is assumed to be 1 mm
and o = 0.3. Thus, the fiber orientation can be written as,

6(p) =D &VAufilp) (2.25)
i=1

where the mean fiber orientation is assumed to be along the x-axis. We assume that the flap is composed of
short fibers which justifies the above model for considering heterogeneity in the fiber orientation. For this
problem, we consider terms up to ¢ = 2 in the KL expansion. A comparatively large uniform pressure of
0.002 N/mm? is applied at the back of the flap. An order 3 PCE is used leading to 10 terms in the expansion.
Figure 2 shows one of the realizations of the heterogeneity in the fiber orientation. The stochastic mean
solution shows a considerable deviation from the deterministic solution. The mean and standard deviation
of the equivalent stress are plotted in Fig. 3.
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Figure 3: Mean (top) and standard deviation (bottom) of the equivalent stress using order 3 PCE (Problem
3).

2.2 Non-intrusive stochastic Galerkin scheme for robust modeling of deforma-
tion processes [2]

In this method, the stochastic process is represented over the support space using piecewise continuous
orthogonal polynomials in multi-dimensional random variables. The polynomials we choose are the locally
supported element shape functions of a specific order used for representing functions in the finite element
method. The space © spanned by these random variables is discretized using disjoint finite element subdo-
mains leading to a new discretized space ©" where h is an element size parameter. This approximation can
be denoted as

g(x,t,0) = g(z,t,&,&,..) = g"(x, t,&,62,..En) = g (x, t, ).

Thus the stochastic process can be represented using the basis functions as

nodes

g"(@,t,6) = ) glei(€) (2.26)
i=1

where ®; are the locally supported basis functions and g; are the corresponding nodal values. A scheme for
discretization of a one dimensional (N = 1) pdf is shown in Fig.4

It was shown in [13] that for functions involving high nonlinearities and critical points the GPCE fails
to perform satisfactorily. On the other hand, a piecewise representation is ideally suited for representing
discontinuities and nonlinearities in the processes. As mentioned before, finite deformation processes involve
considerable degrees on nonlinearities at every stage. Thus we resort to the third approach - a piecewise rep-
resentation using finite element basis functions for representation of the random large deformation processes
in this work. This is also advantageous from a practical point of view since in converting a deterministic
finite element based deterministic large deformation code to simulate stochastic deformation processes, these
basis functions are available from other parts of the code and can be readily used for representing random
functions.

The piecewise representation of the stochastic process which was discussed in the previous section, can
lead to a non-intrusive decoupled as well as intrusive coupled formulation for evaluating the stochastic
process. The two formulations are explained with an example of a solution of a linear system. We consider
the evaluation of a random vector u(x, &) by the solution of a linear system which is defined by a random
matrix A(€) and a random vector b(£) as shown below. (The superscript h has been dropped for notational
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Figure 4: Finite Element discretization scheme for a 1 dimensional pdf

simplicity)
Az, &)u(z, §) = b(x, §) (2:27)

Intrusive Coupled system To solve the system using the coupled formulation, we first represent the
above process in a N dimensional piecewise polynomial basis (equivalent to N nodes in the mesh)

Ai() 2 (§)u; (2)®;(§) = bi(x)Pi () (2.28)

where 4, j,k = 1...N. Thus the solution of the random vector u involves computing the coefficients u; in the
polynomial representation from the known values of A; and bx. This is done by projecting (inner product)
the above equation into each orthogonal basis function ®; leading to

A,-uj < (I’,"I'j‘p[ >=b < @k‘I’{ > (229)

where the inner product is defined as follows

< 2(€)y(E) >= /e 2y f(€)d€ (2.30)

Using the orthogonality relation of the polynomials basis functions in Eq. 2.29 we get
Ay < ©;0;®; >=bp < Bf >y = b < O} > (2.31)

Thus evaluation of the u;’s involves solution of a coupled system. The coupled system involves N x ndof
equations. Moreover, it needs explicit representations of the stochastic processes a(€) and b(€) in terms of
the basis functions which may not be readily available and may involve more intrusive computations and
change of the overall structure of the underlying deterministic code.

Decoupled system - NISG formulation

In the non-intrusive decoupled scheme, the output stochastic process is constructed using deterministic
function evaluations at an optimal number of points defined in the input support space. Considering the
linear system (Eq. 2.27) again at specific points §; of the support space we get

Az, & )u(z, §,) = b(z,§,) (2.32)

As can be observed, each function evaluation of A, u and b takes place at fixed points £, in the random space.

This can be equivalently expressed as
Ai(x)u;(z) = bi(x) (2.33)



The above system can be solved for u; at predetermined points of the support space which can be used to
construct the solution u(x,£). The procedure is explained later in the section.

The specific function evaluation points are chosen from the consideration that in typical problems in-
volving random variables, the quantities of interest are the probability density function, and the statistical
moments of u. The pt* statistical moment can be calculated as follows:

nel

I, = P = ; P
My = [t rs@u =3 [ ety e (234)

where nel is the number of elements in the support space while ©° represents the local element domain.
Using a Gauss quadrature integration scheme with n integration points per element, the above expression

can be approximated as:
nel n

My~ My =7 wi(u(=,t,£))"f(&) (2.35)
e=] i=]
where £; denote the abscissae of the integration points while w; denote the respective weights,
The above equation can be equivalently expressed as:

nel n

My =" wiu(e, )P £(£;) (2.36)

e=1 1=1

where u;(x,t) denotes a deterministic space-time dependent process at each integration point of the support
space.

Thus evaluation of u; is completely deterministic and can be achieved using a readily available determin-
istic solution scheme and hence the non-intrusive terminology. To obtain the pdf of u denoted as f,(£), we
first obtain the values of u at the nodal points of the discretized random space from the integration point
values u;. This can be achieved using a standard least squares smoothing scheme. f,(£) can then be ob-
tained by generating random Monte Carlo samples from the pdfs of the input random variables &, followed by
evaluations of u at those points. It should be noted that this sampling does not require an explicit function
evaluation but is generated from an interpolation of earlier evaluations using the appropriate interpolation
order.

The developed scheme for discretization of the stochastic support space closely follows the finite element
discretization of spatial domains in various applications and inherits all its properties. The the h and p
convergence characteristics of the discretized domain are identical to the case of spatial finite elements.

The procedure for NISG analysis of large deformation processes can be summarized as follows.

1. Determine the pdf of the input uncertainties in terms of independent random variables {£};Y, and
compute the joint pdf f(€).

2. Determine the dimensionality of the support space. Based on this dimension discretize the support
space using finite elements.

3. FOR j=1 to number of elements in the grid

FOR i=1 to number of local element integration points

Compute the values of the random inputs at the support space integration point

Solve the deterministic large deformation problem with the given inputs and compute wu; - the
output of interest.

END
END

4. Compute u from the values of u; using least squares smoothing.
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Figure 5: Initial configuration (left), final configuration with no initial voids (center) final configuration with
an initial void fraction of 0.03.

5. Compute the moments as required from the u; values as deseribed in Eq. 2.35

Thus, the NISG approach involves deterministic function evaluations at the integration points of the
discretized support space of random variables which essentially translates to a decoupled approach for eval-
uating the additional degrees of freedom resulting from the randomness in the problem. The computational
gains attained by this decoupling are significant, Also these gains can offset to a great extent the issue of
slower convergence rate compared to GPCE by the selection of a finer grid for the support space.

NISG Example - Stochastic estimation of die underfill caused by material porosity

This problem studies the effect of a random voids in the design of flashless closed die forging processes.
The material is chosen to be an Fe-2% Si alloy at 1273 K. A hyperbolic sine flow function is assumed. The
die-workpiece friction coefficient was taken as 0.1. For an initial billet (dimensions - radius .9339mm, height
1 mm) with no voids having the same volume as the die (2.74mm?), the deterministic flashless closed die
forging process is shown in Fig. 5. The corresponding final state for the deterministic process with an initial
void fraction of 0.03 in the billet is also shown in the same figure. In the regions where there are compressive
stresses, the void fraction decreases leading to a decrease in volume. The converse happens in regions of
tensile stresses. As a result an underfill is observed in the process.

The NISG technique provides a robust way to estimate the statistics of the extent of die underfill as a
result of a random distribution of voids in the billet. The initial void distribution is derived from an assumed
exponential correlation kernel using a Karhunen Loéve expansion given by :

R(py,0,py,0) = azmp(%’") (2.37)

where r is the distance between the points p; and p,, b is the correlation length assumed to be 5 mm and
o = 0.1. As in the earlier example, a truncated KL expansion sufficient to represent the heterogeneities for
the stochastic void fraction can be written as,

2
f®) = fol +Y_ &V fi(p) (2.38)
=1

where fy = 0.03 is the mean void fraction. A 9x9 grid was used for computing the statistics. The mean
underfill was estimated to be 0.046976mm*® with a standard deviation of 0.0022mm3. Using a 10x10 support
space grid the mean underfill was found to be 0.046187mm? with a standard deviation of 0.0023mm?®. The
complete pdf of the underfill observed is plotted in Fig.6
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Figure 6: Probability distribution of the underfill observed due to material porosity in the flashless closed
die forging problem.

3 Development of multi-scale sensitivity analysis for designing
microstructure-sensitive properties in deformation processes

We have developed a versatile multi-scale design simulator for tailoring properties of materials by altering
die and preform shapes in industrial forming processes. The problem is a significant computational challenge
since a multi-scale design problem for modeling 3D processes approaches a billion degrees of freedom. We
have recently acquired a 128 Intel processor Linux supercomputing cluster with funding from Department
of Defense (DURIP-05) for solving such problems in materials-by-design. The mathematical developments
are briefly explained in this section.

Consider a macroscopic material point and let it be associated with the underlying microstructure M.
Assume that the response of any crystal of the polycrystal is determined by its orientation R, which is
the rotation relating the crystal lattice frame, &;, to a sample reference frame e; as e; = R €;. The ODF
(orientation distribution function), represented as A(r), describes the crystal density over the fundamental
region. A re-orientation map, #, is associated with the ODF as, A(r,t) = A(#(s,t),t) = A(s,t). The
representation of the ODF given by A(r,t) is Eulerian and A(s,t) is Lagrangian.

The evolution of a polycrystal generally demands the numerical solution of an ODF conservation equation.
The conservation equation for the ODF in the Lagrangian description can be written as:

/(Ji(s,t) J(s,t) — ,&(s,o)) dv = 0 (3.1)

where dv is the volume element on the reference fundamental region, J(s,t) = det(V#(s,t)) is the Jacobian
determinant of the re-orientation of the crystals and A(s,0) = Ag(s) is the ODF associated with the
reference map and can be thought of as the initial texturing of the material. The ODF is the microstructural
feature associated with every material point in a simulation of industrial forming process. The two-length
scale sensitivity framework for designing deformation processes to control properties is shown in Fig. 7.

The mathematical definition of the optimization problem for the control of microstructure-sensitive prop-
erties is stated as follows:

m‘én FB) = [r(Qz,r;B) - Qiecired(z))? dV (3.2)

where Q9¢sired is the desired material property represented at a material point on the final product and 3
is the design parameter to be selected. The optimization problem involves the gradient of the property
i g _ (on aa an ]
with respect to the process parameters, represented as: V{1 = (ﬁ, QE""‘E?I)‘ The needed gradient

information for optimization analysis will be computed as:

9 _ Q(rntBi B Bu 0, ,0,88,0,...,0)

5, AB, (3:3)
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Figure 7: Description of the parameter sensitivity analysis involved in a two-scale deformation problem. The
macro-process design variable(s) control the deformation gradient at each material point. These macro-fields
define the underlying microstructure and properties at the material point. In the micro-sensitivity analysis,
we compute how small perturbations in the deformation gradient at the material point affects microstructure
evolution. On the macro-sensitivity analysis, this perturbation to the deformation gradient at each material
point is induced by the perturbations to the macro-design variables. Knowing how a macro design variable
affects microstructure-sensitive properties will allow us to provide feasible materials design obtainable through
processing.

where Sol represents the sensitivity of € (with respect to the design parameters 3). Since each property of
the polycrystal is obtained by averaging relations, it is essential in the proposed analysis to compute the
sensitivity of texture evolution with respect to the process design parameters 3.

Computation of sensitivity of microstructure would involve computation of sensitivity of evolution of
volume fractions of different crystal orientation components over the deformation history. This is computed
by differentiating the ODF evolution equation in order to account for sensitivity of ODF to process variables.
Consider the Lagrangian version of the ODF conservation equation (Eq. (3.1)). Design differentiation of this
equation, assuming that the initial texture is independent of the design parameters (3), leads to the following;:

(A (8,:8,A8) J(s,t;8))dQ = —f«ﬁ(s't;ﬁ) 7 (5,8, AB)dQ (3.4)
Q 1]

(=]

where .j' (s,6;8,A8) = det(Vr(s,t;8,A8)) = J(s,t;8) [V- ?‘(s,t;,@,Aﬁ)]. Here, sensitivities of the

reorientation vector (3) is calculated using sensitivity of the elastic part of deformation gradient computed
by differentiating parameters in the constitutive integration algorithm with respect to process parameters of
interest.

Once the sensitivity field for the ODF is obtained, it is straightforward to compute the sensitivities
of Cauchy stress for use in the macro- sensitivity equations using sensitivity-averaging laws. Evolution of
properties such as yield strength and Youngs modulus can be tracked and controlled at each point in the
forged component by knowing the sensitivities of these parameters to the process variables.

Described below is the analysis for the development of a total Lagrangian sensitivity formulation for the
kinematic problem at the macro-scale. Let the reference configuration be By. The design differentiation of



the macro-scale equilibrium equation results in:

o

o

Vo (P) + f=0 (3.5)

where (P) is the polycrystal averaged PK-I stress. A variational form for the sensitivity equilibrium equation

aiu. s o o
(for parameter sensitivity) can be posed as follows: Evaluate = (X ,t: 3, AB3) such that

o o
/(P) « VoitdVo = / X « 77 dAo (3.6)

By aBy

for every 7, a kinematically admissible sensitivity deformation field expressed over the reference configura-
tion By. Details on the methodologies to obtain sensitivities for three-dimensional die and preform design
problems, and to model sensitivities of die-workpiece contact through design-differentiation of a regularized
contact problem can be found in our work in [7]. Once the final sensitivities of the texture to process variables
is found at the end of simulation of a deformation process, a variety of gradient optimization algorithms can
be invoked to minimize the objective function defined in Eq. (3.2) for tailoring the property distribution in
the material.

Young Modulus in the exit cross section

Figure 8: Control of Youngs Mod-
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Iteration 4

Here, we show optimization of Youngs Modulus variation in the exit cross-section during metal extrusion.
Fig. 8 shows Youngs Modulus distribution at the end of the extrusion process on a sample. The polycrystalline
texture at all points in the exit cross section is controlled by modification of die shapes. The efficiency of the
methodology is exemplified by achievement of optimal Youngs Modulus distribution in only four iterations.
The variation in the Youngs Modulus at the exit cross section for different die designs are compared in
Fig. 8(b). In this problem the objective was designed so as to minimize the variation of Youngs Modulus
over the exit cross section.

4 Development of continuum sensitivity analysis technique for de-
sign of complex three dimensional deformation processes.

We have extended the sensitivity analysis technique to allow design of complex 3D deformation processes. In
extending the design simulator to realistic 3D simulations some important issues were addressed. For complex
dies, as is usually encountered in realistic metal forming simulations, die surfaces were generated using finite
element meshes followed by the construction of a smooth surface from the individual element patches. We
employ Gregory patches for construction of a smooth surface by interpolating the finite element nodes. This
also provides tangential and normal continuity between adjacent patches. In this work automatic hexahedral



Figure 9: Initial preform and final forged product for the steering link problem (Example 6).

remeshing was implemented using the meshing software CUBIT. The specific remeshing algorithm that was
used is known as THEX. In this approach an unstructured hexahedral mesh is generated by first meshing
the workpiece with a tetrahedral mesh following by division of each tetrahedron into four hexes. To aid in
speeding up the solution process for complex forging processes, the design simulator was parallelized using
MPI. The simulator was dynamically linked to the parallel toolbox PetSc for parallel assembly and solution
of linear systems. In particular, for solution of linear systems a GMRES solver along with block Jacobi and
ILU preconditioning from the PetSc toolbox was employed.

Numerical Example: Isothermal preform design for a steering link

The example deals with the isothermal preform design for a steering link to ensure the required shape is
obtained while the material wastage is minimized. The flow rule for the alloy is given by

r=a(2) (4.1)

where €5 = 0.002 s7!, s = 150 MPa and n = 5 while the elastic parameters are taken as A\ = 14423 MPa
and p = 9615.4 MPa.

For the optimization problem we start with an initial preform shape which is a cylinder of much smaller
volume than the volume of the die cavity (Fig.9). The preform surface is discretized using two design
variables which are essentially the radii at the two ends of the cylinder while the length of the cylinder
is fixed. The forging velocity was assumed to be 0.01mm/s while the stroke was fixed at 0.38 mm. The
total simulation time was 38 seconds and partially adaptive remeshing operations were performed every 3
seconds. The number of elements varies between 26000 and 40000 during the remeshing operations within
the optimization iterations. Using symmetry only one-eighth of the actual domain evolution is simulated.
The BFGS algorithm was used for the gradient optimization process. The preform shape and the final forged
product for the optimal iteration are shown in Fig. 10.

5 Development of stochastic variational multi-scale model with
explicit subgrid modeling

The focus of this work is to model uncertainty induced by micro-scale variability on the macro-scale outcomes.
We have developed mathematical models for direct incorporation of the inherent randomness and the effect of
modeling assumptions in the design of upscaling methods. The potential applications for the problem include
solving PDEs in random heterogeneous microstructures, which is a key problem of interest. Heterogeneous
microstructure realizations exhibit property variations at a much smaller scale compared to the size of
the computational domain D. Performing a fully-resolved calculation on these microstructures becomes
computationally expensive. We consider a computational scheme that involves solving for a coarse-solution
while capturing the effects of the fine scale on the coarse solution.



Figure 10: Optimal preform and final forged product for the steering link problem (Example 6).

Problem definition and variational formulation Let D, 7 and 2 denote a closed polygonal domain, a
time interval and a suitable probability space, respectively. The transient diffusion in a heterogenous medium
with a spatially varying random diffusion coefficient k(x,w) can be written as the following stochastic partial
differential equation (SPDE):

uy= V- (k(x,w)Vu) + f(x,t,w), x€D, te T and w € Q, (5.1)

where, u,, denotes the partial time derivative du/dt. The solution u = u(x,t,w) and the source term
f(x,t,w) are real-valued space-time stochastic fields. For closure, we also assume the following initial and
boundary conditions:

u(x,t,w) = uy(x,t,w), xedD, teT and w € 1,
u(x,0,w) = up(x,w), x€ D, and w € 2.

The variational formulation for Egs. (5.1)-(5.3) can now be written as: Find u € U such that for all
veV

(w4 v) + (kVu, Vo) = (f,0), (5.4)
where
(u,v) déf //uvdxd'P. (5.5)
aJo

Additive scale decomposition and variational multiscale method In the variational multiscale ap-
proach, we consider the exact solution u to be made up of contributions from two different scales, namely,
the coarse-scale solution u€, that can be resolved using a coarse-mesh and a subgrid solution uf. In short,
u = u% 4 uf. The main idea behind the VMS (operator upscaling) method is to develop models for charac-
terizing the effect of the subgrid solution on the coarse-scale solution and to subsequently derive a modified
coarse-scale formulation that only involves u€. In order to do that, we split the variational formulation given
in Eq. (5.4) as the following coarse-scale and subgrid equations: Find € € U® and uf € UF such that

(uc,r +uf ,vc) 4 (kVuc + kVuF, V'i,'c) = (f, 'UC), v v€ e VC, (
(€, +uf 1 ,0F) + (kVUC + kVuF, VoF) = (f,vF), ¥ oF e VF, (

6)
7)

on

o

We will now proceed to solve Eq. (5.7) by applying localization assumptions to obtain an approximate model
for the subgrid solution uf. Subsequently, we will use the model for subgrid solution to eliminate uf in
Eq. (5.6) to obtain a modified formulation defined only in terms of «“. Subgrid modeling Assume that
the spatial domain is discretized using a coarse-mesh into disjoint sub-domains Dle) e =1,...,Nel, where,
(e) denotes the sub-domain number. We will refer to these sub-domains as “coarse elements”. Let each
coarse element be further discretized using a subgrid mesh into "Nel{;)" disjoint sub-domains (also referred

[1

to as “subgrid elements” ).



We will now assume that the subgrid solution is a sum of two components @ and uf? that obey the
following variational equations:

(uC,,vF) + (@F , ,0F) + (kVuC, VoF) + (kVaF,voF) = 0, (5.8)
(uF0 ,0F) + (kVuFO, VoF) = (f,0F), (5.9)

where, it incorporates entire coarse-scale solution information and u*? is independent of the coarse-scale
solution. The dynamics of " is driven by the projection of the source term f(x,t,w) onto the subgrid trial
function space V¥,

By Eq. (5.8), the term u” behaves as a mapping from coarse-scale solution to the subgrid solution.
Hence, we refer to 4f as the coarse-to-subgrid (C2S) map. Owing to the affine nature of Eq. (5.9), we shall
refer to uF° as the affine correction term. In order to localize the calculations of the subgrid solution. we
will consider restrictions of Eqs. (5.8) and (5.9) to each coarse element D(¢). The derivations in subsequent
discussion are performed for a single coarse element D(¢).

C2S map and multiscale basis functions Let us assume that in a fully-resolved direct numerical
simulation, the dynamics of the exact solution can be captured using a fine time-step of §t. Since the length
scales of interest in the coarse solution are far greater than the smallest length scale in the exact solution, we
assume that the coarse time-step At is much larger in comparison to §t. Let us consider a coarse time-step
At = [ty,ty41]. Let ¢’ be the local time coordinate defined such that at t,,, t' = 0 and at t,4,, t' = At.

Let us also assume a piecewise polynomial finite element representation for the coarse solution inside a
coarse element D'¢) (please note that (e) is suppressed henceforth to simplify notation):

Nbf
uCx,t,w) = ) uf(t',w)¥p(x), (5.10)
A=1

where, Nbf denotes the number of finite-element shape functions (piecewise polynomials) defined on the
coarse element (8, 9]. Let us further assume a truncated generalized polynomial chaos expansion with Pe + 1
terms for each of the coefficients uf (t',w)

Pc
u§ (', w) =) u§, (t')C(w). (5.11)
s=0

Thus, the stochastic finite-element (spatial finite-element + GPCE) representation of the coarse solution can
be written using local time coordinate as

Nbf Pc

uCix,t,w) =D > uf,(t')¢(w)¥s(x), (5.12)

A=1s=0

where, uf,(t') denotes the nodal solution (each node has Pc + 1 degrees of freedom) and (,(w) are polyno-
mials from the hypergeometric Askey series. The form of Eq. (5.12) has been used in our earlier works [8, 9].
For the C2S map *, we seek a representation similar to Eq. (5.12):

Nbf Pg

af (x,t,w) = Y Y uG(t)eh, (x,t',w). (5.13)

=1 s=0

The fine-scale variational formulation of Eq. (5.8) can be re-written after substitution of Eqs. (5.12) and (5.13)
is simplified as follows:

({ugﬁ(c,npg +050) Ju .uF) + (kv{ug,,(cs% + ¢§,)},qu) =0, (5.14)



Without loss of generality, we can assume the following representation for the coarse-scale nodal solutions

ug,(t’) inside the coarse time-step
u,(t') = A(t)ag, + B(t')ug,, (5.15)

where, ﬂg_, and ﬁga denote the nodal coefficients in the GPCE of the coarse solution at the start and end
of the coarse time step (see Fig. 11). A(t') and B(t') are special positive functions that obey the following
relations:

A(t') + B(t') =1, A(0) =1, A(At) =0, B(0) =0, and B(At) = 1. (5.16)

Eq. (5.15) involves representation of a function as a convex combination of two functions.

(A) (B)
1 1
#
A(r) B(t)

i i
Coarse Coarse
solution field solution field
at start of at end of
time step iF time step

> ¢ At n

Figure 11: A, Schematic of the time integration framework: At is the coarse-time step and t’ is the local
time coordinate. The integration parameters A(t') and B(t') are shown in the figure. Also, ﬁgﬁ and ﬁg; are
identified as the coarse solution fields at the start and end of the coarse time step, respectively. B. Schematic
of a typical coarse element sub-domain: The coordinates normal and tangential to the element edges are
denoted by the letters n and =, respectively.

The representation given in Eq. (5.15) is quite general and incorporates several well-known time integra-
tion rules. For example, A(t') = (At —t')/At and B(t') = t'/At yields a backward-Euler time integration
rule.

From Egs. (5.13) and (5.15), we can write the C2S map as follows:

Nbf Pe
ah(x,t,w) = 3 [a6, A5, (x,t',w) + 75 B(t)oh (x,t',w)]. (5.17)
A=1s=0

We can now write Eq. (5.14) as

s, { ({A(t')(cswa + 85} ,v*") . (W{A(t'){cs‘l’n ' ¢;‘;;1}.W°) } +

ag, { ({B(t’)(c,% 4 ¢>§a)},¢ ,vF) + (kv{B(t'}(c,wa + d):;‘,)}.wf) } 0.

(5.18)

Note that the above equation is fully characterized based on the values taken by ﬁg, and f;g’ and the subgrid
basis function ¢,

We are looking to construct a localized scheme for representation of the subgrid solutions. Further, this
localized scheme should hold for all possible values of the coarse nodal coefficients 4§, and u§,. Hence,
we equate the terms in parentheses to zero to obtain the set of variational formulations defined for each



combination of indices # and s, where, 3 = 1,... ,Nbf and s = 0,...,Pc. Now, by using the relations
A(t') + B(t') = 1, we obtain the evolution equation for ¢5,

((Cs% + b ) ,vF) - (W(Cs% + 65,), VvF) =0. (5.19)

Affine correction term The affine correction term u** as defined by Eq. (5.9) leads to the following
strong form of equations inside each coarse element sub-domain

uF%, 4V . (kVuF) = f, x e D), (5.20)

Boundary conditions In order to localize the computation of @ to a coarse element, we need an ap-
proximate specification of its boundary conditions along coarse-element edges. A schematic showing the
calculation of boundary subgrid basis functions for the case of a quadrilateral coarse element is shown in
Fig. 11. In the VMS simulation, the subgrid basis functions are generated upto a cut-off time (referred here
as the burn-in time) that is chosen such that the effects of the subgrid component of the initial condition
do not affect the coarse solution. This also ensures that the subgrid basis functions capture sufficient infor-
mation about the heterogeneities at the subgrid scale. Note that the affine correction term does not have
any coarse-scale solution dependence, hence, the assumption that this term goes to zero on coarse element
boundaries is justified i.e. u? = 0 on coarse element boundaries. Furthermore, we assume that the affine
correction is zero at the start of each coarse time-step i.e. uf%(x,0,w) = 0 (note that the initial conditions
here refer to the local time coordinate t'=0).

Post-processing: Fine-scale solution reconstruction Let us assume that the coarse-scale solution,
the subgrid basis functions and the affine-correction at a particular time-step are uc[x,u}, $g0(x,w) and
ufO(x,w), respectively. The time dependence is not shown here for clarity sake. Also, we emphasize that all
calculations in this section are performed on the subgrid mesh associated with each coarse element D(¢).

Inside a given coarse element D(¢), we calculate the reconstructed fine-scale VMS solution as follows:

Nbf Pe

U= Z:Zugsti’ga +ufO(x, w), (5.21)

A=1 s=0

where, ®g, = qbf;; + W4(,, is the sum of coarse and subgrid basis functions defined on D), Let us now
consider the GPCE expansions for ®5, and «f° as follows:

Pr Pr
Bpe = Bpols = O Bporlalry v = uf, (5.22)
r=0 =

wherein, Pg + 1 is the number of terms used in the GPCE expansion of ®5¢ and uf°. Now, we can write
Eq. (5.21) as follows:

Nbf Pc Pr

w=Y 3> uf®aor(x)¢r(w)Gs(w) + Z ufO(x)¢-(w), x € D), (5.23)

=1 5=0r=0

The m-th term in the GPCE of the reconstructed fine-scale VMS solution u can now be written as follows:

Nbf Po P
T c (Gr(w) s (W)Cm (w)) i .
h gggu”’% S o e (5.24)

where, (f(w)) is used to denote the mathematical expectation of the random function f(w).

Numerical Example: Transient diffusion in a two-phase microstructure As an example, a
stochastic variational multi-scale formulation was used for addressing transient diffusion problems in random
heterogeneous microstructure ( Fig. 12(a)) with the stochastic parameter being the diffusion coefficient



having multiple length scales. A gray scale image of a representative two-phase (@ and () microstructure.
The intensities (I) are scaled to [0,1]. Let pure a-phase and pure 3-phase be associated with scaled intensities
I =0 and I = 1, respectively.

Probability model — We assume that the pure a and pure F-phases have the following uniformly distributed
thermal conductivities.

kn(“'}} = k,—,[] + lk‘-r.\'l‘gl (‘-‘-'IJ‘ and k,d(wl) = k,‘f[l + k;il*ﬁ'ﬂ(w); {525}

where, £;(w) and & (w) are two independent uniform random variables defined on the interval [-1,1]. We use
the following mixture model for defining the thermal conductivity at a given location on the microstructure:

k(x,w) = (kg(w) — ka(w))I(x) + ka(w), (5.26)

where, I(x) is the scaled intensity at a point x on the microstructure.

GPCE model — Since the input distribution is uniform (two- dimensional), a two-dimensional, third-order
Legendre chaos expansion (yielding a 10 term expansion) was used for representing the solution. The first
few terms in the expansion are shown below:

u(x,t,0) = up + 1€ (w) + uaba(w) + uz (365 (w) — 1)/2,
+ug€y (w)Ea(w) + us (363 (w) —1)/2+ ..., (5.27)
The main idea here was to calculate the diffusion dynamics on a highly coarse-mesh by including localized

solutions to sub-grid problems. The method captures the mean field (Fig. 12(b)) as well as statistical
quantities such as the first order fluctuations (Fig. 12(c)) in the temperature field in a single simulation.

- . o £

Figure 12: Modeling diffusion in heterogeneous random microstructures using a variational multi-scale al-
gorithm: (a) Microstructure image realization, (b) Mean temperature field (coefficients u0 of GPCE), (c)
First-order statistics (coefficient ul in the GPCE).

6 Development of maximum entropy techniques for modeling topo-
logical uncertainties in polycrystalline metallic microstructures

Probability distribution functions (PDFs) providing a complete representation of microstructural variability
in 3D polyerystalline materials using limited information is difficult to obtain since this inverse problem is
highly ill-posed. We use the maximum entropy (MazEnt) principle to compute a PDF of microstructures
based on given information about a microstructural system. Microstructural features are incorporated into
the maximum entropy framework using data obtained from experiments or simulations. Statistics of material
properties are then extracted by interrogating sample microstructures obtained from the resultant probability
distribution function (PDF). These property statistics are important because they give a numerical estimate



of how the material may perform when subjected to extremal conditions. A particular problem of interest
addressed here is the determination of effective behavior of three-dimensional (3D) polycrystalline materials
based on uncertainties induced due to randomness in grain distribution and texture of microstructures.
Some important concerns which are addressed in this work are: (i) how to quantify uncertainties in the
micro-scale based on limited observable behavior at the macroscale, (ii) how to model polycrystal microstruc-
tures and obtain microstructural samples incorporating the uncertainties computed above, and (iii) how to
obtain statistics of homogenized plastic properties from this statistical description of microstructures. In
obtaining the distribution from which microstructures are sampled, we use the principle of maximum en-
tropy (MazEnt). MazEnt is a popular technique that is utilized to construct the PDF for stochastic fields
when limited information is available about them. Availability of limited information is often the case due
to high-costs involved in performing a large number of experiments or simulations. For instance, grain size
distributions of polycrystalline materials cannot be experimentally measured easily since they vary even
at a material point for different samples of the material. Such serious limitations on the measurability of
stochastic fields has made MaxzEnt an immensely popular choice amongst statisticians. To make this method
feasible, information-theorists developed a mathematical tool for measuring entropy of systems. Given a

random variable x which takes discrete values given by 1, x5, ..., x,, the informational entropy of x is given
by
T
H(p) = =) plxi)log(p(z:)) (6.1)
i=1
where p(x;) denotes probability of the discrete event x; occurring. Suppose we have insufficient knowledge

about the distribution p. MazEnt provides a rationale to obtain the entire probabilistic variability about
the variable z. It is to be noted that the entropy function H(p) is convex and in an unconstrained problem,
it achieves its maximum value when all the possible events x; are equiprobable. This occurs when all of
the p(x;) are equal. We call this particular choice of p(x;) as ¢(z;). The distribution ¢(z;) does not lead to
maximum entropy when there is some knowledge about the system z, which denotes the vector of variables
;. To distinguish a random variable from a random field, we use the notation x for the latter. Typical
knowledge about microstructural systems of polycrystalline materials is given in the form of lower-order
statistical moments of grain sizes as well as average texture values in the form of an orientation distribution
functions (ODF). These known moments are denoted as M,;. Features such as grain sizes and ODFs are
denoted as f;. Knowledge about microstructural features, which can be computed using experiments or
simulations, is posed as a constraint for the MazEnt optimization problem which is mathematically stated
as follows:

Find : p*(x) = arg max H(p)
p

with the given constraints

M, = E(fi(x))
M; = E(f2(x))
My = E(fn(x)) (6.2)

where E denotes expectations over the space of random variables. When considering topological uncer-
tainties within a microstructure (Problem 1 in Section 5), we define the operator E for grain size feature
over the set of grains within a microstructure as given below:

G
B(/() = & D f(z) (6.3)
i=1

where G is the number of grains in the microstructure and f represents the grain size feature. The Al

moment of a specific feature f; is computed as E(f!). The distribution that is finally computed, p*(x)



is the most uniform distribution satisfying the given constraints in Eq. (6.2). This means that p*(x) is
closest in distance to g(x) while satisfying the available information about the system given by Eq. (6.2). A
popular choice of distance measure is the Kullback-Leibler (KL) divergence measure. For any two arbitrary
probability distributions, m and n, the KL divergence is given as follows:

m(z;)
KL = i) - 6.4
(mIn) zijm(x,) %9 (6.4)
Hence, the distribution p*(x) satisfies the additional property that:
P’ (x) = argmin K L(p|lq) (6.5)

while satisfying Eq. (6.2). This KL divergence measure is crucial in reconstructing microstructures based on
grain size distributions. The problem of computing a probability distribution p(x) given the constraints in
Eq. (6.2) is ill-posed. MaxzEnt is a technique that is able to establish a unique PDF p*(x) that satisfies the
given information. The maximum entropy technique makes the problem well-posed by imposing additional
restrictions on the computed PDF. Utilizing the microstructural features such as grain sizes and ODFs ( f;),
the PDF that is obtained using the MazEnt technique is of the following form:

e~ I Anful®)

f e erlvzl )\nfu(x)dx

p'(x) = (6.6)
where A; represent the Lagrange multipliers that account for the N system constraints. This exponential
form as seen in Eq. (6.6) is a very central concept in the MazEnt formalism. A number of numerical options
are available to compute a microstructural system that has maximum entropy within its features while
simultaneously satisfying given information about the system. A Gibbs sampler is used that starts from a
random microstructure and after a period known as burn-in, generates microstructures that are sampled
from PDFs of the form given in Eq. (6.6). Samples generated after the burn-in period are accepted as
microstructural samples from the desired distribution. The algorithm for grain sizes follows closely the
algorithm given in [10, 11].

Numerical Example: Variability in Aluminum polycrystals driven by mean grain sizes:
Literature is replete with many instances of phenomenon such as Hall-Petch effect that depend only on the
mean grain size. In such a situation, the variability of grain sizes within a microstructure becomes superficial
since clearly, different distributions may represent the same mean grain size. Hence, we extract a different
feature which quantifies how mean grain sizes vary across different samples. The MazEnt distribution is
defined over a set of microstructures, each characterized by its mean PDF. Potential applications of this
example relates to predicting statistical behavior of random polycrystals where the behavior is a function of
mean grain sizes.

This problem is driven by variability in mean grain sizes of different given Aluminum microstructural
samples. The variability in mean grain sizes as well as textures are utilized to define a PDF of microstructures,
Based on samples from this PDF and using a homogenization scheme [6], we compute bounds in the plastic
stress strain curve of Aluminum. Using input microstructures generated (Fig. 13) from 3D-phase field
simulations, we compute the expected grain sizes (volumes) of each microstructure.

Lower moments until the fourth-order of these (mean) grain sizes are extracted and a maximum entropic
distribution is computed. We use just five input microstructures because in practice, it may prove costly
to compute experimental microstructures at different material points. Hence, the input information relies
only on the limited set of microstructural samples. The resultant distribution based on two, three and four
mean-grain size moments is depicted in Fig. 14. Each point in the x — azis corresponds to a microstructure
with the corresponding value as the mean grain size. Hence, the PDF just represents the probabilities of the
corresponding microstructures.

The MazEnt distribution was computed using the stabilized version of the conjugate gradient algorithm.
The computed distribution also shows that the randomness induced due to MazEnt reduces as we incorpo-
rate more information about the source of randomness (incorporated using higher moments). We compute
voronoi-cell microstructures which are sampled from the MaxzEnt distribution.



Figure 13: Two out of the five samples of microstructures computed using phase field technique that was
used in problem 1.
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Figure 14: A MaxzEnt distribution of mean grain sizes based on inputs from 3D phase-field simulations.

Further, samples from the tail of the MazEnt distribution were computed to obtain bounds on the plastic
properties. Samples near the tails are computed as follows: Start randomly sampling from the MazEnt
distribution till a sample which falls outside the 95% confidence region is reached. 95% confidence region is
the region where 95% of random samples are expected to lie and this is distributed evenly on either side of
the mean. This is accepted as a tail sample. We choose one tail sample from each extreme of the MazEnt
distribution. Each sample computed from the PDF corresponds to a microstructure with the corresponding
mean grain size. Some microstructures that were sampled from the tail are shown in Fig. 15. These were
meshed using the commercially available software CUBIT using hexahedral meshes.

Finally, a rate-independent homogenization method is utilized to compute bounds of the non-linear plastic
properties of the reconstructed microstructures based on a simple tension test using a strain rate of 0.01 per
second. Bounds in the properties based on a set of 25 samples are shown in Fig. 16.

The variability results due to difference between mean grain sizes of these microstructures. Tails of this
distribution correspond to extremes of mean grain size and were crucial in defining bounds on the material
behavior of Aluminum polycrystals. We also saw how the incorporation of different amounts of information
resulted in stricter bounds. Mathematical characterization of such distributions between microstructures
pose potential applications in stochastic simulations such as SSFEM which are still driven by analytical
assumptions. Further, statistical characterizations of phenomenon such as Hall-Petch effect can be made
using the variability in mean grain sizes.



Figure 15: Samples obtained at locations A and B of Fig. 14.
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Figure 16: Bounds of the material strength computed from microstructures sampled near the tail of MazEnt
distribution.
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